Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe

نویسندگان

  • Holger Apitz
  • Iris Salecker
چکیده

Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe.

The brain areas that endow insects with the ability to see consist of remarkably complex neural circuits. Reiterated arrays of many diverse neuron subtypes are assembled into modular yet coherent functional retinotopic maps. Tremendous progress in developing genetic tools and cellular markers over the past years advanced our understanding of the mechanisms that control the stepwise production a...

متن کامل

Evidence for tissue-specific Jak/STAT target genes in Drosophila optic lobe development.

The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Droso...

متن کامل

Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe.

The proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashi...

متن کامل

Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia.

The Drosophila optic lobe develops from neuroepithelial cells, which function as symmetrically dividing neural progenitors. We describe here a role for the Fat-Hippo pathway in controlling the growth and differentiation of Drosophila optic neuroepithelia. Mutation of tumor suppressor genes within the pathway, or expression of activated Yorkie, promotes overgrowth of neuroepithelial cells and de...

متن کامل

Characterization of tailless functions during Drosophila optic lobe formation.

Brain development goes through phases of proliferative growth and differentiation to ensure the formation of correct number and variety of neurons. How and when naïve neuroepithelial cells decide to enter a differentiation pathway remains poorly understood. In the Drosophila visual system, four optic ganglia emerge from neuroepithelia of the inner (IPC) and outer (OPC) proliferation centers. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2016